The complexity of double-strand break ends is a factor in the repair pathway choice.
نویسندگان
چکیده
The repair of double-strand breaks in mammalian cells is carried out by two pathways: homologous recombination and nonhomologous end joining. The factors that regulate the mechanism through which a specific repair pathway is activated are still not clearly defined. To study whether the complexity of the double-strand break ends is a factor that determines the choice of the repair pathway, we examined the involvement of homologous recombination by the formation of Rad51 foci in human HeLa cells treated with bleomycin and ionizing radiation. The quantity of double-strand breaks was determined by gel electrophoresis and the formation of gamma-H2AX foci. Two hours after treatment with low doses of the agents that induced similar quantities of double-strand breaks that could be repaired effectively by the cells, Rad51 foci were observed only in the irradiated cells. Rad51 foci appeared in bleomycin-treated cells after prolonged exposure to the drug when the cells were arrested in the G2 phase of the cell cycle. Since bleomycin produces double-strand breaks that are less complex than the breaks induced by ionizing radiation, these results indicate that the complexity of the break ends is a factor in the choice of repair pathway and that homologous recombination is recruited in the repair of breaks with more complex multiply damaged ends during the late S and G2 phases of the cell cycle.
منابع مشابه
The structure of ends determines the pathway choice and Mre11 nuclease dependency of DNA double-strand break repair
The key event in the choice of repair pathways for DNA double-strand breaks (DSBs) is the initial processing of ends. Non-homologous end joining (NHEJ) involves limited processing, but homology-dependent repair (HDR) requires extensive resection of the 5' strand. How cells decide if an end is channeled to resection or NHEJ is not well understood. We hypothesize that the structure of ends is a m...
متن کاملDNA double-strand break repair pathway choice in Dictyostelium.
DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). The mechanisms that govern whether a DSB is repaired by NHEJ or HR remain unclear. Here, we characterise DSB repair in the amoeba Dictyostelium. HR is the principal pathway responsible for resistance to DSBs during vegetative cell growth, a stage of the life cycle when cells ar...
متن کاملPARP2 controls double-strand break repair pathway choice by limiting 53BP1 accumulation at DNA damage sites and promoting end-resection
Double strand breaks (DSBs) are one of the most toxic lesions to cells. DSB repair by the canonical non-homologous end-joining (C-EJ) pathway involves minor, if any, processing of the broken DNA-ends, whereas the initiation of DNA resection channels the broken-ends toward DNA repair pathways using various lengths of homology. Mechanisms that control the resection initiation are thus central to ...
متن کاملSgs1 and Mph1 Helicases Enforce the Recombination Execution Checkpoint During DNA Double-Strand Break Repair in Saccharomyces cerevisiae.
We have previously shown that a recombination execution checkpoint (REC) regulates the choice of the homologous recombination pathway used to repair a given DNA double-strand break (DSB) based on the homology status of the DSB ends. If the two DSB ends are synapsed with closely-positioned and correctly-oriented homologous donors, repair proceeds rapidly by the gene conversion (GC) pathway. If, ...
متن کاملValproic Acid-Mediated Reduction of DNA Double-Strand Break Reparation Capacity of Irradiated MCF-7 Cells
Introduction H istone deacetylase inhibitors (HDIs), as radiation sensitizing agents, are considered as a novel class of anti-cancer factors, which are studied in various tumor cell-lines. Valproic acid (VPA) is an HDI, which is effectively used in the treatment of epilepsy, migraines, and some particular types of depression. In this study, we evaluated the effects of VPA and ionizing radiatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Radiation research
دوره 171 4 شماره
صفحات -
تاریخ انتشار 2009